Primal-Dual Affine Scaling Interior Point Methods for Linear Complementarity Problems

نویسنده

  • Florian A. Potra
چکیده

A first order affine scaling method and two mth order affine scaling methods for solving monotone linear complementarity problems (LCP) are presented. All three methods produce iterates in a wide neighborhood of the central path. The first order method has O(nL2(lognL2)(log lognL2)) iteration complexity. If the LCP admits a strict complementary solution then both the duality gap and the iteration sequence converge superlinearly with Q-order two. If m = Ω(log( √ nL)), then both higher order methods have O( √ n)L iteration complexity. The Q-order of convergence of one of the methods is (m + 1) for problems that admit a strict complementarity solution while the Q-order of convergence of the other method is (m + 1)/2 for general monotone LCPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinear primal-dual affine scaling algorithms for LCP

We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algori...

متن کامل

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

Primal-Dual Affine-Scaling Algorithms Fail for Semidefinite Programming

In this paper, we give an example of a semidefinite programming problem in which primal-dual affine-scaling algorithms using the HRVW/KSH/M, MT, and AHO directions fail. We prove that each of these algorithm can generate a sequence converging to a non-optimal solution, and that, for the AHO direction, even its associated continuous trajectory can converge to a non-optimal point. In contrast wit...

متن کامل

A POLYNOMIAL-TIME PRIMAL-DUAL AFFINE SCALING ALGORITHM FOR LINEAR AND CONVEX QUADRATIC PROGRAMMING AND ITS POWER SERIES EXTENSION*t

We describe an algorithm for linear and convex quadratic programming problems that uses power series approximation of the weighted barrier path that passes through the current iterate in order to find the next iterate. If r > 1 is the order of approximation used, we show that our algorithm has time complexity O(n t(+l/r)L(l+l/r)) iterations and O(n3 + n2r) arithmetic operations per iteration, w...

متن کامل

Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems

No part of this Journal may be reproduced in any form, by print, photoprint, microolm or any other means without written permission from Abstract This paper provides an analysis of the polynomiality of primal-dual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu's scaled Lip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2008